Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Molecules ; 28(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2273373

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for COVID-19, which was declared a global pandemic in March 2020 by the World Health Organization (WHO). Since SARS-CoV-2 main protease plays an essential role in the virus's life cycle, the design of small drug molecules with lower molecular weight has been a promising development targeting its inhibition. Herein, we evaluated the novel peptidomimetic azatripeptide and azatetrapeptide nitriles against SARS-CoV-2 main protease. We employed molecular dynamics (MD) simulations to elucidate the selected compounds' binding free energy profiles against SARS-CoV-2 and further unveil the residues responsible for the drug-binding properties. Compound 8 exhibited the highest binding free energy of -49.37 ± 0.15 kcal/mol, followed by compound 7 (-39.83 ± 0.19 kcal/mol), while compound 17 showed the lowest binding free energy (-23.54 ± 0.19 kcal/mol). In addition, the absorption, distribution, metabolism, and excretion (ADME) assessment was performed and revealed that only compound 17 met the drug-likeness parameters and exhibited high pharmacokinetics to inhibit CYP1A2, CYP2C19, and CYP2C9 with better absorption potential and blood-brain barrier permeability (BBB) index. The additional intermolecular evaluations suggested compound 8 as a promising drug candidate for inhibiting SARS-CoV-2 Mpro. The substitution of isopropane in compound 7 with an aromatic benzene ring in compound 8 significantly enhanced the drug's ability to bind better at the active site of the SARS-CoV-2 Mpro.


Asunto(s)
COVID-19 , Peptidomiméticos , Humanos , Peptidomiméticos/farmacología , SARS-CoV-2 , Simulación de Dinámica Molecular , Ésteres/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas
2.
Chem Pharm Bull (Tokyo) ; 70(10): 679-683, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2054201

RESUMEN

The liver X receptor is a nuclear hormone receptor that regulates lipid metabolism. Previously, we had demonstrated the antiviral properties of a liver X receptor antagonist associated with the hepatitis C virus and severe acute respiratory syndrome coronavirus 2. In this study, we screened a chemical library and identified two potential liver X receptor antagonists. Spectroscopic analysis revealed that the structures of both antagonists (compounds 1 and 2) were cyclic dimer and trimer of esters, respectively, that consisted of phthalate and 1,6-hexane diol. This study is the first to report the structure of the cyclic trimer of phthalate ester. Further experiments revealed that the compounds were impurities of solvents used for purification, although their source could not be traced. Both phthalate esters exhibited anti-hepatitis C virus activity, whereas the cyclic dimer showed anti-severe acute respiratory syndrome coronavirus 2 activity. Cyclic phthalate derivatives may constitute a novel class of liver X receptor antagonists and broad-spectrum antivirals.


Asunto(s)
COVID-19 , Ésteres , Antivirales/farmacología , Ésteres/farmacología , Hepacivirus , Hexanos , Humanos , Receptores X del Hígado , Ácidos Ftálicos , Receptores Citoplasmáticos y Nucleares , SARS-CoV-2 , Solventes
3.
J Biol Inorg Chem ; 27(4-5): 421-429, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1999959

RESUMEN

In this work, a synthetic approach to prepare an example of new class of the derivatives of the closo-decaborate anion with amino acids detached from the boron cluster by pendant group has been proposed and implemented. Compound Na2[B10H9-O(CH2)4C(O)-His-OMe] was isolated and characterized. This compound has an inorganic hydrophobic core which is the 10-vertex boron cage and the -O(CH2)4C(O)-His-OMe organic substituent. It has been shown to possess strong antiviral activity in vitro against modern strains of A/H1N1 virus at 10 and 5 µg/mL. The compound has been found to be non-cytotoxic up to 160 µg/mL. At the same time, the compound has been found to be inactive against SARS-CoV-2, indicating specific activity against RNA virus replication. Molecular docking of the target derivative of the closo-decaborate anion with a model of the transmembrane region of the M2 protein has been performed and the mechanism of its antiviral action is discussed.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Aminoácidos , Aniones , Antivirales/farmacología , Boro/química , Ésteres/farmacología , Humanos , Simulación del Acoplamiento Molecular , ARN , SARS-CoV-2 , Replicación Viral
4.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1675572

RESUMEN

BACKGROUND: There are limited effective prophylactic/early treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Viral entry requires spike protein binding to the angiotensin-converting enzyme-2 receptor and cleavage by transmembrane serine protease 2 (TMPRSS2), a cell surface serine protease. Targeting of TMPRSS2 by either androgen blockade or direct inhibition is in clinical trials in early SARS-CoV-2 infection. METHODS: We used differentiated primary human airway epithelial cells at the air-liquid interface to test the impact of targeting TMPRSS2 on the prevention of SARS-CoV-2 infection. RESULTS: We first modelled the systemic delivery of compounds. Enzalutamide, an oral androgen receptor antagonist, had no impact on SARS-CoV-2 infection. By contrast, camostat mesylate, an orally available serine protease inhibitor, blocked SARS-CoV-2 entry. However, oral camostat is rapidly metabolised in the circulation, with poor airway bioavailability. We therefore modelled local airway administration by applying camostat to the apical surface of differentiated airway cultures. We demonstrated that a brief exposure to topical camostat effectively restricts SARS-CoV-2 infection. CONCLUSION: These experiments demonstrate a potential therapeutic role for topical camostat for pre- or post-exposure prophylaxis of SARS-CoV-2, which can now be evaluated in a clinical trial.


Asunto(s)
Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/administración & dosificación , Administración Tópica , Andrógenos/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/farmacología , COVID-19/prevención & control , COVID-19/virología , Células Cultivadas , Células Epiteliales , Ésteres/farmacología , Expresión Génica , Células Caliciformes/inmunología , Células Caliciformes/metabolismo , Guanidinas/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Serina Endopeptidasas/genética , Transducción de Señal , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
5.
J Food Biochem ; 46(5): e14062, 2022 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1627170

RESUMEN

Therapeutic drugs based on natural products for the treatment of SARS-CoV-2 are currently unavailable. This study was conducted to develop an anti-SARS-CoV-2 herbal medicine to face the urgent need for COVID-19 treatment. The bioactive components from ethanolic extract of Moringa oleifera fruits (MOFs) were determined by gas chromatography-mass spectroscopy (GC-MS). Molecular-docking analyses elucidated the binding effects of identified phytocomponents against SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) and human ACE2 receptor (PDB ID: 1R42) through the Glide module of Maestro software. GC-MS analysis unveiled the presence of 33 phytocomponents. Eighteen phytocomponents exhibited good binding affinity toward ACE2 receptor, and thirteen phytocomponents had a high affinity with spike glycoprotein. This finding suggests that the top 11 hits (Docking score ≥ -3.0 kcal/mol) could inhibit SARS-CoV-2 propagation. Intriguingly, most of the phytoconstituents displayed drug-likeness with no predicted toxicity. However, further studies are needed to validate their effects and mechanisms of action. PRACTICAL APPLICATIONS: Moringa oleifera (MO) also called "drumstick tree" has been used as an alternative food source to combat malnutrition and may act as an immune booster. GC-MS analysis unveiled that ethanolic extract of Moringa oleifera fruits (MOFs) possessed 33 active components of pyridine, aromatic fatty acid, oleic acid, tocopherol, methyl ester, diterpene alcohol, triterpene and fatty acid ester and their derivatives, which have various pharmacological and medicinal values. Virtual screening study of phytocomponents of MOF with human ACE2 receptor and SARS-CoV-2 spike glycoprotein exhibited good binding affinity. Based on molecular docking, the top 11 hits (Docking score ≥-3.0 kcal/mol) might serve as potential lead molecules in antiviral drug development. Intriguingly, most of the phytoconstituents displayed drug-likeness with no predicted toxicity. Thus, MOF might be used as a valuable source for antiviral drug development to combat COVID-19, an ongoing pandemic.


Asunto(s)
Antivirales , Moringa oleifera , Extractos Vegetales , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Antivirales/química , Antivirales/farmacología , Ésteres/farmacología , Ácidos Grasos/farmacología , Frutas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Moringa oleifera/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/farmacología , Tratamiento Farmacológico de COVID-19
6.
Glycoconj J ; 39(2): 261-290, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1626176

RESUMEN

Carbohydrate esters are significant in medicinal chemistry because of their efficacy for the synthesis of biologically active drugs. In the present study, methyl ß-D-galactopyranoside (MGP) was treated with various acyl halides to produce 6-O-acyl MGP esters by direct acylation method with an excellent yield. To obtain newer products for antimicrobial assessment studies, the 6-O-MGP esters were further modified into 2,3,4-tri-O-acyl MGP esters containing a wide variety of functionalities in a single molecular framework. The chemical structures of the newly synthesized compounds were elucidated by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) revealed that these MGP estes have promising antifungal functionality compared to their antibacterial activities. The antimicrobial tests demonstrated that the compounds 3 and 10 were the most potent against Bacillus subtilis and Escherichia coli strains, with the minimum inhibitory concentration (MIC) values ranging from 0.352 ± 0.02 to 0.703 ± 0.01 mg/ml and minimum bactericidal concentration (MBC) values ranging from 0.704 ± 0.02 to 1.408 ± 0.04 mg/ml. Density functional theory (DFT) at the B3LYP/3-21G level of theory was employed to enumerate, frontier orbital energy, enthalpy, free energy, electronic energy, MEP, dipole moment which evaluated the effect of certain groups (aliphatic and aromatic) on drug properties. They discovered that all esters were more thermodynamically stable than the parent molecule. Molecular docking is performed using AutoDock Vina to determine the binding affinities and interactions between the MGP esters and the SARS-CoV-2 main protease. The modified esters strongly interact with the prime Cys145, His41, MET165, GLY143, THR26, and ASN142 residues. The MGP esters' shape and ability to form multiple electrostatic and hydrogen bonds with the active site match other minor-groove binders' binding modes. The molecular dynamics simulation validates the molecular docking results. The pharmacokinetic characterization of the optimized inhibitor demonstrates that these MGP esters appear to be safer inhibitors and a combination of in silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and drug-likeness had promising results due to their improved kinetic properties. Structure activity relationships (SAR) study including in vitro and silico results revealed that the acyl chain, palmitoyl (C16) and 4-chlorobenzoyl (4.ClC6H4CO-) in combination with sugar were found the most potential activates against human and fungal pathogens. After all, our comprehensive computational and statistical analysis shows that these selected MGP esters can be used as potential inhibitors against the SARS-CoV-2.


Asunto(s)
Antiinfecciosos , COVID-19 , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antivirales/química , Antivirales/farmacología , Ésteres/farmacología , Galactosa , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas , SARS-CoV-2
7.
Biomed Res Int ; 2022: 1558860, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1622112

RESUMEN

Increasing outbreaks of new pathogenic viruses have promoted the exploration of novel alternatives to time-consuming vaccines. Thus, it is necessary to develop a universal approach to halt the spread of new and unknown viruses as they are discovered. One such promising approach is to target lipid membranes, which are common to all viruses and bacteria. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has reaffirmed the importance of interactions between the virus envelope and the host cell plasma membrane as a critical mechanism of infection. Metadichol®, a nanolipid emulsion of long-chain alcohols, has been demonstrated as a strong candidate that inhibits the proliferation of SARS-CoV-2. Naturally derived substances, such as long-chain saturated lipid alcohols, reduce viral infectivity, including that of coronaviruses (such as SARS-CoV-2) by modifying their lipid-dependent attachment mechanism to human host cells. The receptor ACE2 mediates the entry of SARS-CoV-2 into the host cells, whereas the serine protease TMPRSS2 primes the viral S protein. In this study, Metadichol® was found to be 270 times more potent an inhibitor of TMPRSS2 (EC50 = 96 ng/mL) than camostat mesylate (EC50 = 26000 ng/mL). Additionally, it inhibits ACE with an EC50 of 71 ng/mL, but it is a very weak inhibitor of ACE2 at an EC50 of 31 µg/mL. Furthermore, the live viral assay performed in Caco-2 cells revealed that Metadichol® inhibits SARS-CoV-2 replication at an EC90 of 0.16 µg/mL. Moreover, Metadichol® had an EC90 of 0.00037 µM, making it 2081 and 3371 times more potent than remdesivir (EC50 = 0.77 µM) and chloroquine (EC50 = 1.14 µM), respectively.


Asunto(s)
Alcoholes Grasos/farmacología , Sistema de Administración de Fármacos con Nanopartículas/farmacología , SARS-CoV-2/efectos de los fármacos , Virus/efectos de los fármacos , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Ésteres/farmacología , Guanidinas/farmacología , Humanos , Metabolismo de los Lípidos/fisiología , Lípidos/química , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
8.
Emerg Microbes Infect ; 11(1): 277-283, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1585239

RESUMEN

The novel SARS-CoV-2 Omicron variant (B.1.1.529), first found in early November 2021, has sparked considerable global concern and it has >50 mutations, many of which are known to affect transmissibility or cause immune escape. In this study, we sought to investigate the virological characteristics of the Omicron variant and compared it with the Delta variant which has dominated the world since mid-2021. Omicron variant replicated more slowly than the Delta variant in transmembrane serine protease 2 (TMPRSS2)-overexpressing VeroE6 (VeroE6/TMPRSS2) cells. Notably, the Delta variant replicated well in Calu3 cell line which has robust TMPRSS2 expression, while the Omicron variant replicated poorly in this cell line. Competition assay showed that Delta variant outcompeted Omicron variant in VeroE6/TMPRSS2 and Calu3 cells. To confirm the difference in entry pathway between the Omicron and Delta variants, we assessed the antiviral effect of bafilomycin A1, chloroquine (inhibiting endocytic pathway), and camostat (inhibiting TMPRSS2 pathway). Camostat potently inhibited the Delta variant but not the Omicron variant, while bafilomycin A1 and chloroquine could inhibit both Omicron and Delta variants. Moreover, the Omicron variant also showed weaker cell-cell fusion activity when compared with Delta variant in VeroE6/TMPRSS2 cells. Collectively, our results suggest that Omicron variant infection is not enhanced by TMPRSS2 but is largely mediated via the endocytic pathway. The difference in entry pathway between Omicron and Delta variants may have an implication on the clinical manifestations or disease severity.


Asunto(s)
COVID-19/virología , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Internalización del Virus , Replicación Viral , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Chlorocebus aethiops , Cloroquina/farmacología , Endocitosis/efectos de los fármacos , Ésteres/farmacología , Guanidinas/farmacología , Humanos , Evasión Inmune , Neoplasias Pulmonares/patología , Macrólidos/farmacología , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , Células Vero , Cultivo de Virus , Internalización del Virus/efectos de los fármacos , Secuenciación Completa del Genoma
9.
J Virol ; 95(19): e0086121, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1486519

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen causing the coronavirus disease 2019 (COVID-19) global pandemic. No effective treatment for COVID-19 has been established yet. The serine protease transmembrane protease serine 2 (TMPRSS2) is essential for viral spread and pathogenicity by facilitating the entry of SARS-CoV-2 into host cells. The protease inhibitor camostat, an anticoagulant used in the clinic, has potential anti-inflammatory and antiviral activities against COVID-19. However, the potential mechanisms of viral resistance and antiviral activity of camostat are unclear. Herein, we demonstrate high inhibitory potencies of camostat for a panel of serine proteases, indicating that camostat is a broad-spectrum inhibitor of serine proteases. In addition, we determined the crystal structure of camostat in complex with a serine protease (uPA [urokinase-type plasminogen activator]), which reveals that camostat is inserted in the S1 pocket of uPA but is hydrolyzed by uPA, and the cleaved camostat covalently binds to Ser195. We also generated a homology model of the structure of the TMPRSS2 serine protease domain. The model shows that camostat uses the same inhibitory mechanism to inhibit the activity of TMPRSS2, subsequently preventing SARS-CoV-2 spread. IMPORTANCE Serine proteases are a large family of enzymes critical for multiple physiological processes and proven diagnostic and therapeutic targets in several clinical indications. The serine protease transmembrane protease serine 2 (TMPRSS2) was recently found to mediate SARS-CoV-2 entry into the host. Camostat mesylate (FOY 305), a serine protease inhibitor active against TMPRSS2 and used for the treatment of oral squamous cell carcinoma and chronic pancreatitis, inhibits SARS-CoV-2 infection of human lung cells. However, the direct inhibition mechanism of camostat mesylate for TMPRSS2 is unclear. Herein, we demonstrate that camostat uses the same inhibitory mechanism to inhibit the activity of TMPRSS2 as uPA, subsequently preventing SARS-CoV-2 spread.


Asunto(s)
Antivirales/farmacología , Ésteres/farmacología , Guanidinas/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/química , Serina Endopeptidasas/farmacología , Serina Proteasas/farmacología , Antivirales/química , COVID-19/prevención & control , Carcinoma de Células Escamosas , Ésteres/química , Ésteres/metabolismo , Guanidinas/química , Guanidinas/metabolismo , Humanos , Simulación de Dinámica Molecular , Neoplasias de la Boca , Dominios Proteicos , Alineación de Secuencia , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Serina Proteasas/química , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
10.
J Am Coll Cardiol ; 78(16): 1635-1654, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1454219

RESUMEN

Coronavirus disease-2019 (COVID-19) is associated with systemic inflammation, endothelial activation, and multiorgan manifestations. Lipid-modulating agents may be useful in treating patients with COVID-19. These agents may inhibit viral entry by lipid raft disruption or ameliorate the inflammatory response and endothelial activation. In addition, dyslipidemia with lower high-density lipoprotein cholesterol and higher triglyceride levels portend worse outcomes in patients with COVID-19. Upon a systematic search, 40 randomized controlled trials (RCTs) with lipid-modulating agents were identified, including 17 statin trials, 14 omega-3 fatty acids RCTs, 3 fibrate RCTs, 5 niacin RCTs, and 1 dalcetrapib RCT for the management or prevention of COVID-19. From these 40 RCTs, only 2 have reported preliminary results, and most others are ongoing. This paper summarizes the ongoing or completed RCTs of lipid-modulating agents in COVID-19 and the implications of these trials for patient management.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/prevención & control , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Fíbricos/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Niacina/uso terapéutico , Amidas/farmacología , Amidas/uso terapéutico , Ésteres/farmacología , Ésteres/uso terapéutico , Ácidos Grasos Omega-3/farmacología , Ácidos Fíbricos/farmacología , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Reguladores del Metabolismo de Lípidos/farmacología , Reguladores del Metabolismo de Lípidos/uso terapéutico , Niacina/farmacología , Ensayos Clínicos Controlados Aleatorios como Asunto , Compuestos de Sulfhidrilo/farmacología , Compuestos de Sulfhidrilo/uso terapéutico
11.
Molecules ; 26(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1438673

RESUMEN

We report the design and synthesis of a series of new 5-chloropyridinyl esters of salicylic acid, ibuprofen, indomethacin, and related aromatic carboxylic acids for evaluation against SARS-CoV-2 3CL protease enzyme. These ester derivatives were synthesized using EDC in the presence of DMAP to provide various esters in good to excellent yields. Compounds are stable and purified by silica gel chromatography and characterized using 1H-NMR, 13C-NMR, and mass spectral analysis. These synthetic derivatives were evaluated in our in vitro SARS-CoV-2 3CLpro inhibition assay using authentic SARS-CoV-2 3CLpro enzyme. Compounds were also evaluated in our in vitro antiviral assay using quantitative VeroE6 cell-based assay with RNAqPCR. A number of compounds exhibited potent SARS-CoV-2 3CLpro inhibitory activity and antiviral activity. Compound 9a was the most potent inhibitor, with an enzyme IC50 value of 160 nM. Compound 13b exhibited an enzyme IC50 value of 4.9 µM. However, it exhibited a potent antiviral EC50 value of 24 µM in VeroE6 cells. Remdesivir, an RdRp inhibitor, exhibited an antiviral EC50 value of 2.4 µM in the same assay. We assessed the mode of inhibition using mass spectral analysis which suggested the formation of a covalent bond with the enzyme. To obtain molecular insight, we have created a model of compound 9a bound to SARS-CoV-2 3CLpro in the active site.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/química , Antivirales/farmacología , Chlorocebus aethiops , Proteasas 3C de Coronavirus/metabolismo , Ésteres/química , Ésteres/farmacología , Halogenación , Humanos , Ibuprofeno/análogos & derivados , Ibuprofeno/farmacología , Indometacina/análogos & derivados , Indometacina/farmacología , Simulación del Acoplamiento Molecular , Piridinas/química , Piridinas/farmacología , SARS-CoV-2/metabolismo , Ácido Salicílico/química , Ácido Salicílico/farmacología , Células Vero
12.
FASEB J ; 35(6): e21651, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1388031

RESUMEN

The SARS-CoV-2 pandemic imposed a large burden on health and society. Therapeutics targeting different components and processes of the viral infection replication cycle are being investigated, particularly to repurpose already approved drugs. Spike protein is an important target for both vaccines and therapeutics. Insights into the mechanisms of spike-ACE2 binding and cell fusion could support the identification of compounds with inhibitory effects. Here, we demonstrate that the integrity of disulfide bonds within the receptor-binding domain (RBD) plays an important role in the membrane fusion process although their disruption does not prevent binding of spike protein to ACE2. Several reducing agents and thiol-reactive compounds are able to inhibit viral entry. N-acetyl cysteine amide, L-ascorbic acid, JTT-705, and auranofin prevented syncytia formation, viral entry into cells, and infection in a mouse model, supporting disulfides of the RBD as a therapeutically relevant target.


Asunto(s)
Acetilcisteína/análogos & derivados , Amidas/farmacología , Ácido Ascórbico/farmacología , Auranofina/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19 , Disulfuros/metabolismo , Ésteres/farmacología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Compuestos de Sulfhidrilo/farmacología , Internalización del Virus/efectos de los fármacos , Acetilcisteína/farmacología , COVID-19/metabolismo , COVID-19/patología , Células HEK293 , Humanos
13.
J Virol ; 95(21): e0097521, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1361966

RESUMEN

Repurposing FDA-approved inhibitors able to prevent infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could provide a rapid path to establish new therapeutic options to mitigate the effects of coronavirus disease 2019 (COVID-19). Proteolytic cleavages of the spike (S) protein of SARS-CoV-2, mediated by the host cell proteases cathepsin and TMPRSS2, alone or in combination, are key early activation steps required for efficient infection. The PIKfyve kinase inhibitor apilimod interferes with late endosomal viral traffic and through an ill-defined mechanism prevents in vitro infection through late endosomes mediated by cathepsin. Similarly, inhibition of TMPRSS2 protease activity by camostat mesylate or nafamostat mesylate prevents infection mediated by the TMPRSS2-dependent and cathepsin-independent pathway. Here, we combined the use of apilimod with camostat mesylate or nafamostat mesylate and found an unexpected ∼5- to 10-fold increase in their effectiveness to prevent SARS-CoV-2 infection in different cell types. Comparable synergism was observed using both a chimeric vesicular stomatitis virus (VSV) containing S of SARS-CoV-2 (VSV-SARS-CoV-2) and SARS-CoV-2. The substantial ∼5-fold or higher decrease of the half-maximal effective concentrations (EC50s) suggests a plausible treatment strategy based on the combined use of these inhibitors. IMPORTANCE Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the coronavirus disease 2019 (COVID-2019) global pandemic. There are ongoing efforts to uncover effective antiviral agents that could mitigate the severity of the disease by controlling the ensuing viral replication. Promising candidates include small molecules that inhibit the enzymatic activities of host proteins, thus preventing SARS-CoV-2 entry and infection. They include apilimod, an inhibitor of PIKfyve kinase, and camostat mesylate and nafamostat mesylate, inhibitors of TMPRSS2 protease. Our research is significant for having uncovered an unexpected synergism in the effective inhibitory activity of apilimod used together with camostat mesylate or nafamostat mesylate.


Asunto(s)
Antivirales/farmacología , Benzamidinas/farmacología , Ésteres/farmacología , Guanidinas/farmacología , Hidrazonas/farmacología , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Pirimidinas/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Sinergismo Farmacológico , Humanos , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2/fisiología , Células Vero , Internalización del Virus , Tratamiento Farmacológico de COVID-19
14.
mBio ; 12(4): e0097021, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1338834

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has caused significant morbidity and mortality on a global scale. The etiologic agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), initiates host cell entry when its spike protein (S) binds to its receptor, angiotensin-converting enzyme 2 (ACE2). In airway epithelia, the spike protein is cleaved by the cell surface protease TMPRSS2, facilitating membrane fusion and entry at the cell surface. This dependence on TMPRSS2 and related proteases suggests that protease inhibitors might limit SARS-CoV-2 infection in the respiratory tract. Here, we tested two serine protease inhibitors, camostat mesylate and nafamostat mesylate, for their ability to inhibit entry of SARS-CoV-2 and that of a second pathogenic coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV). Both camostat and nafamostat reduced infection in primary human airway epithelia and in the Calu-3 2B4 cell line, with nafamostat exhibiting greater potency. We then assessed whether nafamostat was protective against SARS-CoV-2 in vivo using two mouse models. In mice sensitized to SARS-CoV-2 infection by transduction with human ACE2, intranasal nafamostat treatment prior to or shortly after SARS-CoV-2 infection significantly reduced weight loss and lung tissue titers. Similarly, prophylactic intranasal treatment with nafamostat reduced weight loss, viral burden, and mortality in K18-hACE2 transgenic mice. These findings establish nafamostat as a candidate for the prevention or treatment of SARS-CoV-2 infection and disease pathogenesis. IMPORTANCE The causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), requires host cell surface proteases for membrane fusion and entry into airway epithelia. We tested the hypothesis that inhibitors of these proteases, the serine protease inhibitors camostat and nafamostat, block infection by SARS-CoV-2. We found that both camostat and nafamostat reduce infection in human airway epithelia, with nafamostat showing greater potency. We then asked whether nafamostat protects mice against SARS-CoV-2 infection and subsequent COVID-19 lung disease. We performed infections in mice made susceptible to SARS-CoV-2 infection by introducing the human version of ACE2, the SARS-CoV-2 receptor, into their airway epithelia. We observed that pretreating these mice with nafamostat prior to SARS-CoV-2 infection resulted in better outcomes, in the form of less virus-induced weight loss, viral replication, and mortality than that observed in the untreated control mice. These results provide preclinical evidence for the efficacy of nafamostat in treating and/or preventing COVID-19.


Asunto(s)
Benzamidinas/farmacología , Ésteres/farmacología , Guanidinas/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tratamiento Farmacológico de COVID-19
15.
Clin Biochem ; 96: 56-62, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1305215

RESUMEN

OBJECTIVES: Camostat mesilate is a drug that is being repurposed for new applications such as that against COVID-19 and prostate cancer. This induces a need for the development of an analytical method for the quantification of camostat and its metabolites in plasma samples. Camostat is, however, very unstable in whole blood and plasma due to its two ester bonds. The molecule is readily hydrolysed by esterases to 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA) and further to 4-guanidinobenzoic acid (GBA). For reliable quantification of camostat, a technique is required that can instantly inhibit esterases when blood samples are collected. DESIGN AND METHODS: An ultra-high-performance liquid chromatography-tandem mass spectrometry method (UHPLC-ESI-MS/MS) using stable isotopically labelled analogues as internal standards was developed and validated. Different esterase inhibitors were tested for their ability to stop the hydrolysis of camostat ester bonds. RESULTS: Both diisopropylfluorophosphate (DFP) and paraoxon were discovered as efficient inhibitors of camostat metabolism at 10 mM concentrations. No significant changes in camostat and GBPA concentrations were observed in fluoride-citrate-DFP/paraoxon-preserved plasma after 24 h of storage at room temperature or 4 months of storage at -20 °C and -80 °C. The lower limits of quantification were 0.1 ng/mL for camostat and GBPA and 0.2 ng/mL for GBA. The mean true extraction recoveries were greater than 90%. The relative intra-laboratory reproducibility standard deviations were at a maximum of 8% at concentrations of 1-800 ng/mL. The trueness expressed as the relative bias of the test results was within ±3% at concentrations of 1-800 ng/mL. CONCLUSIONS: A methodology was developed that preserves camostat and GBPA in plasma samples and provides accurate and sensitive quantification of camostat, GBPA and GBA by UHPLC-MS/MS.


Asunto(s)
Recolección de Muestras de Sangre/métodos , Cromatografía Líquida de Alta Presión/métodos , Ésteres/sangre , Guanidinas/sangre , Espectrometría de Masas en Tándem/métodos , COVID-19/sangre , Inhibidores Enzimáticos/farmacología , Esterasas/antagonistas & inhibidores , Esterasas/metabolismo , Ésteres/metabolismo , Ésteres/farmacología , Guanidinas/farmacología , Humanos , Hidrólisis/efectos de los fármacos , Isoflurofato/química , Isoflurofato/farmacología , Paraoxon/sangre , Paraoxon/química , Paraoxon/farmacología , Reproducibilidad de los Resultados , SARS-CoV-2/aislamiento & purificación , Tratamiento Farmacológico de COVID-19
16.
Cell Rep ; 36(3): 109415, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1283976

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants threatens efforts to contain the coronavirus disease 2019 (COVID-19) pandemic. The number of COVID-19 cases and deaths in India has risen steeply, and a SARS-CoV-2 variant, B.1.617, is believed to be responsible for many of these cases. The spike protein of B.1.617 harbors two mutations in the receptor binding domain, which interacts with the angiotensin converting enzyme 2 (ACE2) receptor and constitutes the main target of neutralizing antibodies. Therefore, we analyze whether B.1.617 is more adept in entering cells and/or evades antibody responses. B.1.617 enters two of eight cell lines tested with roughly 50% increased efficiency and is equally inhibited by two entry inhibitors. In contrast, B.1.617 is resistant against bamlanivimab, an antibody used for COVID-19 treatment. B.1.617 evades antibodies induced by infection or vaccination, although less so than the B.1.351 variant. Collectively, our study reveals that antibody evasion of B.1.617 may contribute to the rapid spread of this variant.


Asunto(s)
Enzima Convertidora de Angiotensina 2/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Ésteres/farmacología , Guanidinas/farmacología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Línea Celular , Humanos , Inhibidores de Proteasas/farmacología , Unión Proteica , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación
17.
EBioMedicine ; 65: 103255, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1116567

RESUMEN

BACKGROUND: Antivirals are needed to combat the COVID-19 pandemic, which is caused by SARS-CoV-2. The clinically-proven protease inhibitor Camostat mesylate inhibits SARS-CoV-2 infection by blocking the virus-activating host cell protease TMPRSS2. However, antiviral activity of Camostat mesylate metabolites and potential viral resistance have not been analyzed. Moreover, antiviral activity of Camostat mesylate in human lung tissue remains to be demonstrated. METHODS: We used recombinant TMPRSS2, reporter particles bearing the spike protein of SARS-CoV-2 or authentic SARS-CoV-2 to assess inhibition of TMPRSS2 and viral entry, respectively, by Camostat mesylate and its metabolite GBPA. FINDINGS: We show that several TMPRSS2-related proteases activate SARS-CoV-2 and that two, TMPRSS11D and TMPRSS13, are robustly expressed in the upper respiratory tract. However, entry mediated by these proteases was blocked by Camostat mesylate. The Camostat metabolite GBPA inhibited recombinant TMPRSS2 with reduced efficiency as compared to Camostat mesylate. In contrast, both inhibitors exhibited similar antiviral activity and this correlated with the rapid conversion of Camostat mesylate into GBPA in the presence of serum. Finally, Camostat mesylate and GBPA blocked SARS-CoV-2 spread in human lung tissue ex vivo and the related protease inhibitor Nafamostat mesylate exerted augmented antiviral activity. INTERPRETATION: Our results suggest that SARS-CoV-2 can use TMPRSS2 and closely related proteases for spread in the upper respiratory tract and that spread in the human lung can be blocked by Camostat mesylate and its metabolite GBPA. FUNDING: NIH, Damon Runyon Foundation, ACS, NYCT, DFG, EU, Berlin Mathematics center MATH+, BMBF, Lower Saxony, Lundbeck Foundation, Novo Nordisk Foundation.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Ésteres/farmacología , Guanidinas/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Cricetinae , Células HEK293 , Humanos , Pulmón/patología , Pulmón/virología , Proteínas de la Membrana/biosíntesis , Simulación de Dinámica Molecular , Serina Endopeptidasas/biosíntesis , Serina Proteasas/biosíntesis , Células Vero , Activación Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
18.
Chem Biol Interact ; 338: 109428, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1103757

RESUMEN

Camostat mesylate, a potent inhibitor of the human transmembrane protease, serine 2 (TMPRSS2), is currently under investigation for its effectiveness in COVID-19 patients. For its safe application, the risks of camostat mesylate to induce pharmacokinetic drug-drug interactions with co-administered drugs should be known. We therefore tested in vitro the potential inhibition of important efflux (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCG2)), and uptake transporters (organic anion transporting polypeptides OATP1B1, OATP1B3, OATP2B1) by camostat mesylate and its active metabolite 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA). Transporter inhibition was evaluated using fluorescent probe substrates in transporter over-expressing cell lines and compared to the respective parental cell lines. Moreover, possible mRNA induction of pharmacokinetically relevant genes regulated by the nuclear pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR) was analysed in LS180 cells by quantitative real-time PCR. The results of our study for the first time demonstrated that camostat mesylate and GBPA do not relevantly inhibit P-gp, BCRP, OATP1B1 or OATP1B3. Only OATP2B1 was profoundly inhibited by GBPA with an IC50 of 11 µM. Induction experiments in LS180 cells excluded induction of PXR-regulated genes such as cytochrome P450 3A4 (CYP3A4) and ABCB1 and AhR-regulated genes such as CYP1A1 and CYP1A2 by camostat mesylate and GBPA. Together with the summary of product characteristics of camostat mesylate indicating no inhibition of CYP1A2, 2C9, 2C19, 2D6, and 3A4 in vitro, our data suggest a low potential of camostat mesylate to act as a perpetrator in pharmacokinetic drug-drug interactions. Only inhibition of OATP2B1 by GBPA warrants further investigation.


Asunto(s)
Interacciones Farmacológicas , Ésteres/metabolismo , Guanidinas/metabolismo , Inhibidores de Serina Proteinasa/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Ésteres/química , Ésteres/farmacología , Guanidinas/química , Guanidinas/farmacología , Humanos , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico/metabolismo , Receptor X de Pregnano/genética , Receptor X de Pregnano/metabolismo , ARN Mensajero/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología
19.
Appl Biochem Biotechnol ; 193(6): 1909-1923, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1053100

RESUMEN

The unprecedented coronavirus SARS-CoV-2 outbreak at Wuhan, China, caused acute respiratory infection to humans. There is no precise vaccine/therapeutic agents available to combat the COVID-19 disease. Some repurposed drugs are saving the life of diseased, but the complete cure is relatively less. Several drug targets have been reported to inhibit the SARS-CoV-2 virus infection, in that TMPRSS2 (transmembrane protease serine 2) is one of the potential targets; inhibiting this protease stops the virus entry into the host human cell. Camostat mesylate, nafamostat, and leupeptin are the drugs, in which the first two drugs are being used for COVID-19 and leupeptin also tested. To consider these drugs as the repurposed drug for COVID-19, it is essential to understand their binding affinity and stability with TMPRSS2. In the present study, we performed the molecular docking and molecular dynamics (MD) simulation of these molecules with the TMPRSS2. The docking study reveals that leupeptin molecule strongly binds with TMPRSS2 protein than the other two drug molecules. The RMSD and RMSF values of MD simulation confirm that leupeptin and the amino acids of TMPRSS2 are very stable than the other two molecules. Furthermore, leupeptin forms interactions with the key amino acids of TMPRSS2 and the same have been maintained during the MD simulations. This structural and dynamical information is useful to evaluate these drugs to be used as repurposed drugs, however, the strong binding profile of leupeptin with TMPRSS2, suggests, it may be considered as a repurposed drug for COVID-19 disease after clinical trial.


Asunto(s)
Antivirales/farmacología , Benzamidinas/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , Ésteres/uso terapéutico , Guanidinas/uso terapéutico , Leupeptinas/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Serina Endopeptidasas/metabolismo , Antivirales/uso terapéutico , Benzamidinas/farmacología , COVID-19/virología , Ésteres/farmacología , Guanidinas/farmacología , Humanos , Unión Proteica , SARS-CoV-2/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA